The Lateral Control of Autonomous Vehicles: A Review

Arifin B., Suprapto B.Y., Prasetyowati S.A.D., Nawawi Z.

Abstract

Human need safety, comfort, and speed in driving-requirements that can be fulfiled by autonomous vehicles that enable drivers to avoid obstacles and maintain a safe distance from other motorists. These function are executed through lateral vehicle control, which has been the subject of considerable research. The current research was aimed at providing a comprehensive review and description of previous investigations that implemented both conventional and innovative lateral control methods, such as proportional-integral-derivative control, fuzzy logic, artificial intelligence, neural networks, genetic algorithms, and combined approaches. The evaluated studies were also classified into two categories, namely simulation and experimental research that used real-world tools. The paper concludes with a recomendation to use an alternative method called direct inverse control. Which is a modification of neural network-based control. This method is advantageous because it uses output/input feedback, thereby effectively functioning in unpredicable terrain. This feature is highly suitable because autonomous vehicles are non-linear system.

Journal
Icecos 2019 3rd International Conference on Electrical Engineering and Computer Science Proceeding
Page Range
277-282
Volume
Issue Number
Publication date
2019
Total citations

References 10

Cited By 25

Mahtout I.

No Title

Zhao J., Lefranc G., El A.

No Title

Han G., Fu W., Wang W., Wu Z.

No Title

Park M., Han W.

No Title

Menhour L., Ea-Novel B.A., Fliess M., Gruyer D.

No Title

Chan P.T., Rad A.B., Ho M.L.

A study on lateral control of autonomous vehicles via fired fuzzy rules chromosome encoding scheme

Wang G., Fujiwara N., Bao Y.U.E.

No Title

Kornhauser A.L.

No Title

Ho M.L., Chan P.T., Rad A.B., Shirazi M., Cina M.

A novel fused neural network controller for lateral control of autonomous vehicles

Onieva E., Naranjo J.E.

No Title

Ï