HIF-1α controls palatal wound healing by regulating macrophage motility via S1P/S1P1 signaling axis
Tanaka E., Izawa T., Iwasa A., Hutami I.R., Sakamaki T., Khurel-Ochir T., Tomita S.
Abstract
Objectives: To investigate the role of hypoxia-inducible factor 1α (HIF-1α) signaling, the expression profile of M1 and M2 macrophages, and the role of the sphingosine 1-phosphate (S1P)/S1P receptor system in palatal wound healing of heterozygous HIF-1α-deficient (HIF-1α HET) mice. Materials and methods: HIF-1α HET and wild-type (WT) littermates underwent palatal tissue excision at the mid-hard palate. Histological analysis, immunostaining, real-time PCR, Western blotting (WB), and cellular migration assays were performed to analyze wound closure and macrophage infiltration. Results: DMOG pretreatment showed an acceleration of palatal wound closure in WT mice. In contrast, the delayed palatal wound closure was observed in HIF-1α HET mice with diminished production of Col1a1, MCP-1, and MIP-1α, compared with WT mice. Decreased infiltration of M1 macrophage (F4/80<sup>+</sup>TNF-α<sup>+</sup>, F4/80<sup>+</sup>iNOS<sup>+</sup>) and M2 macrophage (F4/80<sup>+</sup>Arginase-1<sup>+</sup>, F4/80<sup>+</sup>CD163<sup>+</sup>) was observed. The numbers of F4/80<sup>+</sup>S1P<inf>1</inf><sup>+</sup> macrophages of HIF-1α HET wounded tissues were significantly lower compared with WT tissues. S1P treatment of bone marrow macrophages (BMMs) significantly upregulated expression of S1P<inf>1</inf> in WT mice compared with HIF-1α HET. Phosphorylation of MAPK rapidly decreased in BMMs of HIF-1α HET mice than in BMMs of WT mice by S1P stimulation. Moreover, S1P enhanced HIF-1α expression via S1P<inf>1</inf> receptors to affect macrophage migration. Conclusions: HIF-1α deficiency aggravates M1 and M2 macrophage infiltration and controls macrophage motility via S1P/S1P<inf>1</inf> signaling. These results suggest that HIF-1α signaling may contribute to the regulation of palatal wound healing.
Sphingosine 1-phosphate receptor 2 and 3 mediate bone marrow-derived monocyte/macrophage motility in cholestatic liver injury in mice
Han Z., Li L., Mai P., Tian L., Wang L., Yang L., Zhang Y.
Tissue Iron Promotes Wound Repair via M2 Macrophage Polarization and the Chemokine (C-C Motif) Ligands 17 and 22
Banyard K.L., Hardman M.J., Mace K.A., Matteucci P., Roberts E.R., Stafford A.R., Wilkinson H.N.
Sphingosine-1-Phosphate and Macrophage Biology-How the Sphinx Tames the Big Eater
Brune B., Brune B., Brune B., Brune B., Olesch C., Weigert A., Brune B., Brune B., Brune B., Brune B., Olesch C., Weigert A.
Hypoxia-induced neutrophil survival is mediated by HIF-1α-dependent NF-κB activity
Chilvers E.R., Condliffe A.M., Cowburn A.S., Cramer T., Farahi N., Johnson N., Johnson R.S., Peyssonnaux C., Print C., Sobolewski A., Walmsley S.R.
Defective brain development in mice lacking the Hif-1α gene in neural cells
Gassmann M., Gonzalez F.J., Kageyama R., Kitahama Y., Maekawa N., Sakamoto H., Sakamoto M., Takahama Y., Tomita S., Tomita S., Tomita S., Ueda N., Ueki M., Ueno M.
Identification and characterization of the new osteoclast progenitor with macrophage phenotypes being able to differentiate into mature osteoclasts
Kaji K., Kudo A., Takeshita S.
Differential activation and antagonistic function of HIF-α isoforms in macrophages are essential for NO homeostasis
Asagiri M., Doedens A., Hoffmann A., Johnson R.S., Kim J.-W., O'Dea E.L., Simon M.C., Stockmann C., Takeda N., Weidemann A., Asagiri M., Doedens A., Hoffmann A., Johnson R.S., Kim J.-W., O'Dea E.L., Simon M.C., Stockmann C., Takeda N., Weidemann A.
Systemic preconditioning by a prolyl hydroxylase inhibitor promotes prevention of skin flap necrosis via HIF-1-induced bone marrow-derived cells
Hashimoto I., Higashida M., Ikeda Y., Kihira Y., Kurobe H., Morimoto A., Nakanishi H., Takaku M., Tamaki T., Tomita S., Tomita S., Ushiyama A., Hashimoto I., Higashida M., Ikeda Y., Kihira Y., Kurobe H., Morimoto A., Nakanishi H., Takaku M., Tamaki T., Tomita S., Tomita S., Ushiyama A.
Distinct patterns of angiogenesis in oral and skin wounds
DiPietro L.A., Steinberg M.J., Szpaderska A.M., Walsh C.G., DiPietro L.A., Steinberg M.J., Szpaderska A.M., Walsh C.G.
The wound fibroblast and macrophage. I: Wound cell population changes observed in tissue culture
Allardyce R.A., Duley J.A., Fraser R., Rosman I., Stewart R.J.
Journal of Taibah University Medical Sciences
Tanaka E., Izawa T., Iwasa A., Hutami I.R., Sakamaki T., Khurel-ochir T.
International Journal of Molecular Sciences
Aractingi S., Ramirez R.P., Nguyen V.T., Nakamura T., Ngo Q.T., Jaisser F., Farman N.
British Journal of Pharmacology
Zeng Y., Xie L., Ma J., Wang Q.
Biocell
Yang G., Ren L., Jiang Z., Zhu D., Zhang H., He J., Chen Y., Chen Y., Wang Y.
Materials Today Bio
Li F., Chai Y.
Chinese Journal of Plastic Surgery
Sethi G., Chugunova E., Fan R., Neganova M.E., Tse E., Liu J., Aleksandrova Y., Burcher J.T., Sukocheva O.A., Bishayee A.
Cell Communication and Signaling