Hypoxic mesenchymal stem cell-conditioned medium accelerates wound healing by regulating IL-10 and TGF-β levels in a full-thickness-wound rat model

Putra A., Amalina N.D., Muhar A.M., Alif I., Hermansyah D., Hidayah N., Makharim F.

Abstract

Full-thickness wound healing is a complex process requiring a well-orchestrated mechanism of various factors, including cytokines, particularly interleukin (IL)-10 and transforming growth factor (TGF)-β. IL-10 and TGF-β act as robust anti-inflammatory cytokines in accelerating the wound healing process by regulating myofibroblasts. Hypoxic mesenchymal stem cell-conditioned medium (hypMSC-CM) containing cytokines potentially contribute to accelerate wound repair without scarring through the paracrine mechanism. This study aims to observe the role of hypMSC-CM in controlling TGF-β and IL-10 levels to accelerate full-thickness wound repair and regeneration. A total of 24 male Wistar rats were used in this study. Six healthy rats as a sham group and 18 rats were created as full-thickness-wound animal models using a 6 mm punch biopsy. The animals were randomly assigned into three groups (n = 6) consisting of two treatment groups treated with hypMSC-CM at a low dose (200 μL hypMSC-CM with 2 g water-based gel added) and a high dose (400 μL hypMSC-CM with 2 g water-based gel added) and a control group (2 g water-based gel only). The IL-10 and TGF-β levels were examined by ELISA. The results showed a significant increase in IL-10 levels on day 3 after hypMSC-CM treatment, followed by a decrease in platelet-derived growth factor (PDGF) levels on days 6 and 9. In line with this finding, the TGF-β levels also increased significantly on day 3 and then linearly decreased on days 6 and 9. HypMSC-CM administration may thus promote wound healing acceleration by controlling IL-10 and TGF-β levels in a full-thickness-wound rat model.

Journal
Indonesian Journal of Biotechnology
Page Range
187-194
Publication date
2022
Total citations
MSC-derived exosomes attenuate cell death through suppressing AIF nucleus translocation and enhance cutaneous wound healing

Han X., Jin M., Li P., Lian A., Liu F., Liu J.Y., Liu M., Liu X., Liu Z., Wang B., Wang Y., Zhang Y., Zhao G., Zou F., Zuo K., Han X., Jin M., Li P., Lian A., Liu F., Liu J.Y., Liu M., Liu X., Liu Z., Wang B., Wang Y., Zhang Y., Zhao G., Zou F., Zuo K.

Hypoxia enhances selfrenewal properties and markers of mesenchymal stem cells

Putra A., Sumarawati T, Yustianingsih V, Putra A., Sumarawati T, Yustianingsih V, Putra A., Sumarawati T, Yustianingsih V, Putra A., Sumarawati T, Yustianingsih V

Enhancement of wound healing by human multipotent stromal cell conditioned medium: The paracrine factors and p38 MAPK activation

Chao K.-C., Chao K.-C., Chen H.-L., Chen H.-W., Chen L.-L., Chiou S.-H., Chiou S.-H., Huang T.-F., Hung S.-C., Hung S.-C., Hung Y.-T., Hung Y.-T., Li H.-Y., Li H.-Y., Tsai K.-S., Yew T.-L.

Interleukin 10 gene-modified bone marrow-derived dendritic cells attenuate liver fibrosis in mice by inducing regulatory T cells and inhibiting the TGF-β/Smad signaling pathway

Chen Y., Guo Y., Li S., Liu M., Lu M., Tang X., Xu Y., Yang M., Zhang S., Chen Y., Guo Y., Li S., Liu M., Lu M., Tang X., Xu Y., Yang M., Zhang S.

The Cytokine TGF-β Induces Interleukin-31 Expression from Dermal Dendritic Cells to Activate Sensory Neurons and Stimulate Wound Itching

Cain A., Chen W., Guo N., Han Y., Hoon M.A., Hu L., Jin W., Liu N., Liu O., Liu O., Tseng P.-Y., Wang F., Wang F., Wang S., Xu J., Yin J., Zanvit P., Zhang D.

MSC-exosome: A novel cell-free therapy for cutaneous regeneration

Qian H., Shi H., Wu P., Xu W., Zhang B., Qian H., Shi H., Wu P., Xu W., Zhang B., Qian H., Shi H., Wu P., Xu W., Zhang B.

Intravenous Umbilical Cord-derived Mesenchymal Stem Cells Transplantation Regulates Hyaluronic Acid and Interleukin-10 Secretion Producing Low-grade Liver Fibrosis in Experimental Rat

Lindarto D., Putra A., Sembiring R.J., Sungkar T., Lindarto D., Putra A., Sembiring R.J., Sungkar T., Lindarto D., Putra A., Sembiring R.J., Sungkar T., Lindarto D., Putra A., Sembiring R.J., Sungkar T., Lindarto D., Putra A., Sembiring R.J., Sungkar T., Lindarto D., Putra A., Sembiring R.J., Sungkar T., Lindarto D., Putra A., Sembiring R.J., Sungkar T., Lindarto D., Putra A., Sembiring R.J., Sungkar T., Lindarto D., Putra A., Sembiring R.J., Sungkar T., Lindarto D., Putra A., Sembiring R.J., Sungkar T., Lindarto D., Putra A., Sembiring R.J., Sungkar T.

Emerging Role of IL-10 in Hypertrophic Scars

Du Y., Feng Y., Liu S.-Y., Lv G.-Z., Lv G.-Z., Sun Z.-L., Wu J.-J., Yang M.-L., Yu S., Yuan F.-L., Yuan F.-L., Yuan Z.-D., Zhang J.-R., Zhao B.-H., Zou M.-L.

The Role of the Anti-Inflammatory Cytokine Interleukin-10 in Tissue Fibrosis

Balaji S., Bollyky P.L., Butte M.J., Keswani S.G., Keswani S.G., Steen E.H., Steen E.H., Wang X., Balaji S., Bollyky P.L., Butte M.J., Keswani S.G., Keswani S.G., Steen E.H., Steen E.H., Wang X., Balaji S., Bollyky P.L., Butte M.J., Keswani S.G., Steen E.H., Wang X.

Anti-fibrotic actions of interleukin-10 against hypertrophic scarring by activation of PI3K/AKT and STAT3 signaling pathways in scar-forming fibroblasts

Bai X., Cai W., Fang X., Guan H., Hu D., Hu X., Li J., Shi J., Su L., Wang H., Wang Y., Zheng Z., Zhu X., Bai X., Cai W., Fang X., Guan H., Hu D., Hu X., Li J., Shi J., Su L., Wang H., Wang Y., Zheng Z., Zhu X.

Access to Document