Modified Firefly Algorithm for Optimization of the Water Level in the Tank
Ni'am M.F., Wahyudi S.I., Haikal M.A., Ali M., Parwanti A., Iswinarti
Abstract
Accuracy of water level measurement has been required by controlling the flow of water in tanks in industrial processes. The accuracy of the water level must be determined to control the flow and volume of water used in the storage tank. It is necessary to design a good tank-based water flow control model. This system uses a flow sensor to detect the speed of water flow in an actuator. The actuator stabilizes the water output rate per minute at a certain point. So we need an automatic and accurate control method design. This study focuses on the Modified Firefly Algorithm (MFA) artificial intelligence method which is designed for water levels. As a comparison, the design method is used without control, conventional PID (PID), PID-Auto tune using Matlab (PID-Auto), PID-Firefly Algorithm (PID-FA) method, and Modified Firefly Algorithm (PID-MFA) method. The simulation results show that the smallest overshot value in the PID-MFA model is 0.421 pu, the smallest undershot value in the PID-MFA is 0.496 pu. Output Current The smallest overshot value for the PID-MFA model is 1.264 pu, the smallest undershot value for the PID-MFA model is 0.219 pu. The output Flow result obtained the smallest overshot value in the PID-MFA model =1.532 pu, the smallest undershot in the model PID-MFA =0.201 pu. Thus it can be concluded that the best controller model is PID-MFA. Future research will be compared with other artificial intelligence methods.
A review of PID control, tuning methods and applications
Borase R.P., Maghade D.K., Pawar S.N., Sondkar S.Y.
Optimal Design of Water Tank Size for Power System Flexibility and Water Quality
Hu B., Li C., Niu T., Tai H.-M., Xie K., Yao Y., Hu B., Li C., Niu T., Tai H.-M., Xie K., Yao Y.
A modified firefly algorithm for global minimum optimization
Kose C., Yelghi A.
Modified firefly algorithm
Ong H.C., Tilahun S.L.
Optimization on PID and ANFIS Controller on Dual Axis Tracking for Photovoltaic Based on Firefly Algorithm
Ali M., Budiman, Muslim M.A., Nurohmah H., Suharsono J., Suyono H.
Comparison of LFC Optimization on Micro-hydro using PID, CES, and SMES based Firefly Algorithm
Ali M., Askan A., Cahyono I., Kadaryono K., Parwanti A., Rukslin R., Ali M., Askan A., Cahyono I., Kadaryono K., Parwanti A., Rukslin R., Ali M., Askan A., Cahyono I., Kadaryono K., Parwanti A., Rukslin R., Ali M., Askan A., Cahyono I., Kadaryono K., Parwanti A., Rukslin R.
Application of firefly algorithm on optimal power flow control incorporating simplified impedance UPFC model
Emily Manoranjitham G., Shunmugalatha A.
Firefly Algorithm for Finding Optimal Shapes of Electromagnetic Devices
Alb M., Alb M., Alotto P., Magele C., Preis K., Renhart W., Trapp B.
Optimization of Water Level Control Systems Using ANFIS and Fuzzy-PID Model
Ali M., Budiman, Firdaus A.A., Iswinarti, Muhlasin, Parwanti A., Ali M., Budiman, Firdaus A.A., Iswinarti, Muhlasin, Parwanti A., Ali M., Budiman, Firdaus A.A., Iswinarti, Muhlasin, Parwanti A., Ali M., Budiman, Firdaus A.A., Iswinarti, Muhlasin, Parwanti A.
Load growth and power flow control with DSRs: Balanced vs unbalanced transmission networks
Broadwater R., Dilek M., Hambrick J., Kreikebaum F., Omran S., Thomas C.
David D., Edy Victor Haryanto S., Widayanti T., Ronny R.
2022 4th International Conference on Cybernetics and Intelligent System Icoris 2022
Wahyudi S.I., Parwanti A., Ni'am M.F.
Civil Engineering and Architecture
Mistry K., Robson A., Woo W.L.
International Conference on Agents and Artificial Intelligence
Wahyudi S., Haikal M.A., Soedarsono, Djalal M.R., Ali M., Siswanto M.
E3s Web of Conferences