Real Time System Handling Using Multi Fixed Weight Artificial Neural Network

Suprapto B.Y., Hapsari J.P., Budisusila E.N., Dwi Prasetyowati A., Nugroho A.A., Arifin B., Ismail M., Khosyi'in M., Nawawi Z.

Abstract

Artificial Neural Network (ANN) algorithms are often used to predict the output according to the input given to it. Before being implemented, ANN requires a number of exercises (training) to obtain the appropriate weight, so that the difference between the output and the set target is as minimal as possible. The training process requires a lot of training data and the number of repeated trainings reaches hundreds, thousands or even millions of times. Therefore, this training requires a large memory and a very long time. Given these conditions, ANN cannot be directly implemented in a system that requires real-time data processing, with the speed of time and accuracy of the output. Especially when applied to vehicle systems that definitely demand speed and execution accuracy when encountering changes in sensor parameters embedded in it, so that unwanted conditions can be avoided. For this reason, training can be done first to obtain network weights, then these weights are injected into the system which requires real-time execution.

Journal
International Conference on Electrical Engineering Computer Science and Informatics Eecsi
Page Range
504-508
Publication date
2023
Total citations
Ultrasonic Multi-Sensor Detection Patterns on Autonomous Vehicles Using Data Stream Method

Budisusila E.N., Khosyi'In M., Nawawi Z., Prasetyowati S.A.D., Suprapto B.Y., Budisusila E.N., Khosyi'In M., Nawawi Z., Prasetyowati S.A.D., Suprapto B.Y.

Artificial neural network algorithm for autonomous vehicle ultrasonic multi-sensor system

Arifin B., Budisusila E.N., Nawawi Z., Prasetyowati S.A.D., Suprapto B.Y., Arifin B., Budisusila E.N., Nawawi Z., Prasetyowati S.A.D., Suprapto B.Y., Arifin B., Budisusila E.N., Nawawi Z., Prasetyowati S.A.D., Suprapto B.Y.

A comparative study of categorical variable encoding techniques for neural network classifiers

Potdar T.S.K., Potdar K.

Machine learning and deep neural network - Artificial intelligence core for lab and real-world test and validation for ADAS and autonomous vehicles: AI for efficient and quality test and validation

Butting B., Muller C., Sax E., Vishnukumar H.J., Butting B., Muller C., Sax E., Vishnukumar H.J., Butting B., Muller C., Sax E., Vishnukumar H.J., Butting B., Muller C., Sax E., Vishnukumar H.J., Butting B., Muller C., Sax E., Vishnukumar H.J.

No Title

Cheng C.-A., Lee K., Pan Y., Saigol K., Cheng C.-A., Lee K., Pan Y., Saigol K.

Genetically tuned controller of an adaptive cruise control for urban traffic based on ultrasounds

Alonso L., Arce J., Fernandez M., Ibarra M., Ordonez V., Perez-Oria J., Rodriguez C., Alonso L., Arce J., Fernandez M., Ibarra M., Ordonez V., Perez-Oria J., Rodriguez C., Alonso L., Arce J., Fernandez M., Ibarra M., Ordonez V., Perez-Oria J., Rodriguez C., Alonso L., Arce J., Fernandez M., Ibarra M., Ordonez V., Perez-Oria J., Rodriguez C.

Ultrasonic sensors in urban traffic driving-aid systems

Alonso L., de Pedro T., Godoy J., Milanes V., Oria J.P., Torre-Ferrero C., Alonso L., de Pedro T., Godoy J., Milanes V., Oria J.P., Torre-Ferrero C., Alonso L., de Pedro T., Godoy J., Milanes V., Oria J.P., Torre-Ferrero C., Alonso L., de Pedro T., Godoy J., Milanes V., Oria J.P., Torre-Ferrero C.

Collision avoidance using neural networks

Sowmya Shree B.V., Sugathan S., Vidhyapathi C.M., Warrier M.R., Sowmya Shree B.V., Sugathan S., Vidhyapathi C.M., Warrier M.R., Sowmya Shree B.V., Sugathan S., Vidhyapathi C.M., Warrier M.R., Sowmya Shree B.V., Sugathan S., Vidhyapathi C.M., Warrier M.R.

Obstacle avoidance system for unmanned ground vehicles by using ultrasonic sensors

De Simone M.C., Guida D., Rivera Z.B., De Simone M.C., Guida D., Rivera Z.B., De Simone M.C., Guida D., Rivera Z.B., De Simone M.C., Guida D., Rivera Z.B., De Simone M.C., Guida D., Rivera Z.B.

Neural control system in obstacle avoidance in mobile robots using ultrasonic sensors

Camas-Anzueto J.L., Hernandez-De Leon H.R., Medina-Santiago A., Mota-Grajales R., Vazquez-Feijoo J.A., Vazquez-Feijoo J.A., Camas-Anzueto J.L., Hernandez-De Leon H.R., Medina-Santiago A., Mota-Grajales R., Vazquez-Feijoo J.A., Vazquez-Feijoo J.A., Camas-Anzueto J.L., Hernandez-De Leon H.R., Medina-Santiago A., Mota-Grajales R., Vazquez-Feijoo J.A., Vazquez-Feijoo J.A.

Advanced Artificial Neural Network for Steering and Braking Control of Autonomous Electric Vehicle

Haddin M., Budisusila E.N., Prasetyowati S.A.D., Nugroho A.A., Arifin B., Khosyi'in M.

International Journal of Electrical and Electronics Research